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Extended symmetrical classical electrodynamics
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In this paper, we discuss a modification of classical electrodynamics in which “ordinary” point charges are
absent. The modified equations contain additional terms describing the induced charges and currents. The
densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic
field, E and B. It is shown that the vectors E and B can be defined in terms of two four-potentials and the
components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified
electrodynamics is defined. The conditions are derived at which only one four-potential determines the behav-
ior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electro-
magnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the
electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface
between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and
magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k.
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I. INTRODUCTION

In recent years, there has been a growing interest in the
study of classical Maxwell-Chern-Simons (MCS) electrody-
namics. The fundamental equations of MCS electrodynamics
are

1B
VXE+—-—=0, (1)
c ot

V-B=0, (2)

10E 4,
VXB-——=—j,-mB-k XE, (3)

c ot c
V-E=4mp,+k-B, (4)

where p, and j, are the “ordinary” charge and current densi-
ties, respectively, and ordinary charges are considered as
point particles. The quantities m and k have dimensions of
inverse length and can be considered either as the compo-
nents of the four-gradient of the dynamic pseudoscalar (ax-
ion) field [1-7] or as the components of a constant four-
pseudovector [8—12]. With m=0 the set of equations (1)—(4)
was obtained in noncommutative electrodynamics [13].

Equations (3) and (4) can be written in the following
form:

10E 4w, 4=

VXB-——=— +—'.’ 5
AP T | (5)
V-E=4mp,+ 47p;, (6)
where
c
ji=——(mB+k XE), (7)
4
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As distinct from the Maxwell equations, Egs. (5) and (6)
contain the additional quantities j; and p; which can be inter-
preted as follows [1]. The quantity j; is the current density
induced by the magnetic and electric fields and the quantity
p; is the charge density induced by the magnetic field. From
(7) and (8) it follows that the induced current and charge
densities are the functions of the vectors of the electromag-
netic field. In such a manner, the electric charge can be con-
sidered as a secondary property of the electromagnetic field.
It is necessary to note that the induced current is not con-
nected with mechanical motion of any point charges. The
first term on the right-hand side of (7) has arisen in magne-
tohydrodynamics [8] and the second term has appeared in the
description of the Hall effect [14].

In the absence of ordinary sources, the Maxwell equations
can be considered as two sets of equations when one is trans-
formed into the other if the replacement E—B, B—-E
takes place. The equations of MCS electrodynamics do not
have such symmetry. Using Egs. (1)—(4), we shall try to for-
mulate equations of electrodynamics which will have such
symmetry. First we assume that the equation for the curl of B
has the same form as Eq. (3) but the quantities p, and j, are
equal to zero. Thus Eq. (3) can be written in the form

10E
VXB-—=—mB-kXE. 9)
c ot

Then we carry out the replacement E— B, B— —E in Eq. (9)
and get the equation for the curl of E:

1JB
VXE+—E=—mE+kXB. (10)
c

Suppose that the quantities m and k are constant in time and
space. Computing the curls of Egs. (9) and (10), we find the
equations
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2 B, . 2mJE
OB+-kX —+(m " +k)B=——-2mk XE
c ot ot

c
+Vfi +Kkfy, (11)
2 JE s s 2m B
OE+-kX —+m " +k)E=2mk X B - ——
c ot c ot
+Vf, - Kkfy, (12)
where [ is the d’ Alembertian
1 &
O0=V’-S— 13
c*or (13)
and
fi=V-B-k-E, (14)
f>,=V-E+k-B. (15)

Suppose that f; and f, are equal to zero. In this case the
divergences B and E can be written as

V.B=k-E, (16)

V.E=-k-B. (17)

The set of equations (9), (10), (16), and (17) can be consid-
ered as the basic set of equations of modified electrodynam-
ics. As distinct from MCS electrodynamics Egs. (10) and
(16) contain additional terms describing the induced mag-
netic charges and currents.

II. THE FUNDAMENTAL EQUATIONS OF EXTENDED
SYMMETRICAL CLASSICAL ELECTRODYNAMICS

Let us take the divergence of both sides of (9) and (10):
19

-——(V-E-k-B)-m(V-B+k-E)=0, (18)
cot

10
—E(V~B+k~E)+m(V~E—k-B)=O. (19)
c

Equations (16) and (17) can be written in the form

V-B=4mp,, (20)

V-E=4mp,, (21)
where p,, is the density of the induced magnetic charge,
1
Pm= —k-E, (22)
41
and p, is the density of the induced electric charge,
1
p.=——k-B. (23)
4
Substituting (20)—(23) into (18) and (19), we obtain

—_ =0, 24
o P (24)
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IPm
— 4 =0. 25
o T MCPe (25)

From (24) and (25) it follows that oscillations of the densi-
ties of the induced charges must occur if m# 0. The fre-
quency o of such oscillations can be written as w=|m|c. The
oscillations of p, and p,, have the same magnitude but differ
in phase by 90°. Consequently, an electric charge transforms
into a magnetic charge and vice versa. In this case the law of
charge conservation is broken and therefore we let m=0.
With m=0 Egs. (24) and (25) become

a 1. B

Pe k-0, (26)
ot 4 ot

a 1. JE

P — . =20, (27)
ot 4 ot

The conditions (26) and (27) mean that either the electric and
magnetic fields do not depend on time or the time-varying B
and E are both perpendicular to the direction of k.

If m=0 and k # 0, the set of equations (9), (10), (16), and
(17) can be written

10JE
VXB-—-——=-kXE, (28)
c ot
V-E=-k: B, (29)
1B
VXE+—-—=k XB, (30)
c ot
V-B=k:E. (31)

We call equations (28)—(31) the fundamental equations of
extended symmetrical classical (ESC) electrodynamics.
Equations (28)—(31) were postulated by the authors in [15].
Computing the curls of Egs. (28) and (30) and using (29) and
(31), we find

2 B
OB+-kX—+kB=0, (32)
c Jat

2 JE
OE+-kX —+kE=0. (33)
c Jt

The set of equations (28)—(31) or (32) and (33) describes the
behavior of the electromagnetic field in the space region
where the vector k is not zero. In general, the induced charge
and current are distributed over this region and we therefore
call this region the induced charge and current (ICC) domain.
Outside the ICC domain, the behavior of the electromagnetic
field is governed by the Maxwell equations.

III. THE POTENTIALS IN ESC ELECTRODYNAMICS

In ESC electrodynamics we can define E and B in terms
of potentials:

!

10A
——7+k¢"+k><A', (34)

c

E=-V¢ -V XA"
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”

19
B=-V§'+ VXA ~——— k¢ +kx A" (35)
C

where ¢’ and ¢” are scalar potentials, and A’ and A" are
vector potentials. Lorentz covariance requires that the poten-
tials ¢', A’, ¢", and A” form two four-vector potentials

A't=(¢"A"), (36)

A///,L= (¢/I’AI/)’ (37)

where we use greek indices u, v,... to run from O to 3. Since
E is a polar vector and B is an axial vector, the components
of E and B can be interpreted as the components of the
antisymmetric second-rank tensor [16]

0 E,L E, E

y z
0 -B. B,

F,,= OZ —1; ) (38)
0

We can write the components of F,, as

Fuv=F = 5 €™’ (39)
where
Fl,=d,A,— Al +K,,A" (40)
F'P7 = PA"7 — "A"P + KP7*A", (41)
and €,,,, is the totally antisymmetric fourth-rank tensor

[16]. The tensor K ,,,, is a four-tensor of the third rank and its
nonvanishing components in the rest frame of the ICC do-
main are

koza = kaoz = kozo = — k3o = — ko3 == kapo =k,  (42)
koi3 = k3o1 = k3j0=—kip3=—ko31 = —ki30=k,, (43)

koo = koo = ki20= = kag1 = = koo == ko= k., (44)

where the quantities k,, k,, and k_ are the components of the
vector k. The tensor K,,,,, is antisymmetric in indices u and

v. It can be shown that

K oK™= 6(k; + K, + k) = 6k, (45)

uva

Thus k2 is a Lorentz invariant. With k=0 the tensor (39) is
the Cabibbo-Ferrari tensor [17]

Fuy=0,A,= A — €,,,,0°A". (46)
Let us write Egs. (28) and (30) as

10E 4
vxB--=="T; (47)

c Jt c

10B 4
VXE+-—=- "0 (48)

c ot c

where j, is the density of the induced electric current,
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c
jo.=——kXE, (49)
41
and j,, is the density of the induced magnetic current,
. c
ju=——"kXB. (50)
41
Then we introduce a four-vector j¢ as

o= < Kmrap 51)
Je = 8m mr
If the expressions (38) and (42)—(44) are substituted into
(51), the following expression can be obtained:

Je=(cpeie), (52)

where p, and j, are defined by the expressions (23) and (49),
respectively. Thus the induced electric charge and current
densities are the components of a four-vector. We now intro-
duce a four-vector jo as

. c *

Jo=—KMF (53)

"8 m

where F :‘w is the dual electromagnetic tensor
. 1 oo
F,uvz EE,U.VpU‘F . (54)

The expression (53) can be written as

Jm = (CPmim) (55)

where p,, and j,, are defined by the expressions (23) and
(50), respectively. Thus the induced magnetic charge and
current densities are also the components of a four-vector.

The Lagrangian of ESC electrodynamics can be taken in
the form

L= asE L(152—192) (56)
16w * 8 '

Substituting (34) and (35) into (56) and using the principle of
least action [16], we obtain the basic equations (28)—(31) of
ESC electrodynamics.

IV. THE EQUATIONS FOR THE POTENTIALS
Substituting (34) and (35) into (28) and (30), we obtain

2 JA"
DA'+—kX7+k A" =V + ki, (57)
c
2 &A” )
A"+ 7k X ==+ A" = Vijs ki, (58)
c
2 1(9 ’ " 2 41
Vi 4 (VA kA K =0, (59)
c
2 16 " ’ 2 g4n
V¢+_E(V'A -k-A")+k¢"=0, (60)
c

where
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194’

b=v-A 10 (61)
c ot
1(9 U

b=v-ar- 1Y a (62)
c ot
1(9 U

PR NN (63)
c ot
194’

b=V A -2y ar (64)
c ot

In order to determine the divergence of A’ and A”, we can
use the expressions (61) and (63). We assume that ;=0 and
3=0. In this case we have

14¢’
voa+ 2 g, (65)
c ot
1 (9 U
voars 29 a (66)
c ot
Substituting (65) and (66) into (57)—(60), we obtain:
2 dA’ 2 99"
OA’ + =k X —+k2A’=——ki, (67)
c ot c ot
2 JA" 2 9¢'
Oa7+ 2k x 22 ear= 228 (68)
c ot c Jt
P 2 JA”
O¢' +k%¢' =— k- —, (69)
c ot
1/ 2 qn 2 aA’
O¢"+ k¢ = "k - —. (70)
c ot

The set of equations (65)—(70) is equivalent to the set of
equations (28)—(31).

Let us examine the case in which the electromagnetic
field is defined in terms of only one four-potential. Let A"*
#0 and A"*=0. From Egs. (65)—(70) it follows that the fol-
lowing conditions must be satisfied:

194’
voa i o (71)
c ot
k-A'=0, (72)
i’
o 73
o (73)

Substituting (73) into (71), we find
V.A'=0. (74)

Thus the vector potential A’ satisfies the Coulomb gauge
condition. The scalar potential ¢’ of the time-varying elec-
tromagnetic field vanishes. Consequently, the time-varying
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electromagnetic field is governed by the equation

!

2 0A "
OA’ + -k X — +k°A’'=0. (75)
c ot

From (34) and (35) it follows that the vectors of the time-
varying electromagnetic field are

19A’

E=————+k XA’, (76)
c ot
B=V XA'. (77)

In the static case the electromagnetic field is determined by
the scalar potential ¢’ and the vector-potential A’, which are
the solutions of the equations:

VA +K*A’ =0, (78)

Vi +k*¢' =0, (79)

The vectors of the static field can be obtained from (34) and
(35), which are in this case

E=-V¢ +k XA, (80)

B=VXA' —Kk¢'. (81)

An equation similar to (79) is used to calculate the “self-
induced” electrostatic field in [18]. We can find similar ex-
pressions for the four-potential A"* if A"*# (0 and A’#=0.

V. THE STATIC ELECTROMAGNETIC FIELD IN ESC
ELECTRODYNAMICS AND THE ELECTRIC MONOPOLE

In the static case the relations (26) and (27) are satisfied
automatically and the set of basic equations of ESC electro-
dynamics becomes

VXB=-k XE, (82)
V.-E=-k-B, (83)
VXE=k XB, (84)
V.-B=k-E. (85)

Combining the curls of Egs. (82) and (84), we obtain the
equations

AB+ kB =0, (86)

AE +K’E=0. (87)

If we find the magnetic field from (86) then the electric
field can be calculated from (82)—(85):

E= é[k X (V X B) +k(V-B)]. (88)

We call such a state of the electromagnetic field a state of the
magnetic type. We can similarly find the electric field from
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(87) and then the magnetic field can be calculated from
(82)—(85):

1
B=—-5{k X (VX E)+k(V - E)} (89)
We call the electromagnetic field described by (87) and (89)
a state of the electric type.

A. The electromagnetic field of the electric monopole

Let us now show that the set (82)—(85) has a solution that
describes the electromagnetic field of the electric monopole.
Such a state of the electromagnetic field is a state of the
electric type and it is defined by Eqgs. (87) and (89). Then we
assume that the ICC domain is a sphere of radius R which is
at rest with respect to an inertial frame of reference. In this
case it is convenient to use spherical coordinates (r, 6, @),
where 6 is the angle between k and r. We denote the unit
vectors of the spherical coordinate system by e,, ey, and e,,.

The electric field of the electric monopole has spherical
symmetry. In the ICC domain of the monopole (r<R) such a
solution of Eq. (87) can be written as

C
E= 713/2(/“)6” (90)

Vkr

where C is a constant, and J3,(kr) is the Bessel function.
The static Maxwell equations are used to find the electro-
magnetic field outside the ICC domain. In the outer region of
the monopole (r>R) the electric field E¢ is the solution of
the Laplace equation

E=Le, 1)

where ¢ is the electric charge of the monopole. Substituting
(90) in (89), we find that the magnetic field in the inner
region (r<<R) of the monopole is given by

C
B=——=J,(kr)e,, (92)
Vkr

where e, is a unit vector parallel to k. The magnetic field
components are

C
B,=——=J,,,(kr)cos 6, (93)
Jer 12
C .
By=——=J,,(kr)sin 6. (94)
\r'kr

From (92)—(94) it is seen that the magnetic field in the ICC
domain is a dipole field. In the outer region (r>R) the mag-
netic dipole field is a solution of the Laplace equation, and
its components are

r

2
BS= —';Lcos 0, (95)
r
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B4 =Ssin o, (96)
r

where u is the magnetic moment of the monopole. Let us
assume that the magnetic field must be continuous at the
interface between the inner and outer regions of the mono-
pole. In our case this condition is satisfied if the magnetic
field vanishes at r=R. From (93) and (94) it follows that the
boundary condition for the magnetic field can be satisfied
only if

sin(kR) =0. (97)

This means that k has the eigenvalues

™
ki=n—, 98
= (98)
™
k=—n—, 99
p=mn (99)
n=0,1,2,3,... . (100)
Consequently, the eigenvalues of k are
T
k;::nEek, (101)
™
k,=—n—e,. 102
n nRek ( )

Thus the two eigenvalues k and k, correspond to the given
value of n. The solution corresponding to k; we call the
positive component of the nth mode and the solution corre-
sponding to k, we call the negative component of the nth
mode. The electric and magnetic vectors of the positive and
negative components of the nth mode can be written as

*

E, ==+ T/”TJm(k;r)er, (103)
\’ llr
.G R
B, =- ?11/2(1‘#)%- (104)
Nk, 1

In accordance with the superposition principle, the electric
and magnetic fields of the nth mode are given by

E,=E +E, = RZQ#Js/z(er)em (105)

Vk,r

G

Bn:B;+B;:— RZ—/ZT‘I”Z(er)ek’ (106)

NK,r

where the constants

0,=(C,-C,)R*, (107)
G,=(CI+C,)R* (108)

have dimensions of electric or magnetic charge, respectively.
In the outer region of the monopole (r>R) the electric field
of the nth mode is
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E.="e,, (109)

where ¢, is the electric charge of the nth mode of the mono-
pole. With r=R the electric field is continuous and, therefore,
from (105) and (109) it follows that

Qn == 71-\/gn(_ l)nqn'

Thus the electric field of the monopole has only a radial
component. The dipole magnetic field is nonzero in the ICC
domain of the monopole.

In accordance with the superposition principle, the vector
k is an operator that acts on the vectors E and B as follows:

(110)

k-F=2 (ki -Fi+k,-F)=> k' - (F.-F,)= > k! -F,,

(111)
kX F=2, (k' XF' +k, X F;)
n

=Dk X(F-F)=> kI xF, (112

where F is the vector E or B and
F,,:F;—F;. (113)

Substituting the expressions (103) and (104) in (113), we
obtain for the electric monopole

_ _ G,

E,=E -E =——=J(ke,, (114)
/ nr

B —B*—B‘——LJ (k'r)e (115)

n— Yn n— Rz\r'ﬁ 12\K, 7)€,

With k=0 the equations of ESC electrodynamics become the
Maxwell equations. Hence the operator k does not act on the
vectors of Maxwell electrodynamics,

k-F, =0, (116)

k X F,=0, (117)

where F), is the vector of the Maxwell field. Thus the den-
sities of induced charges and currents of the electric mono-
pole do not depend on the Maxwell field.

B. The energy and angular moment of the electric monopole

It can be shown that, similarly to Maxwell electrodynam-
ics, the Poynting theorem of ESC electrodynamics can be
written as follows:

1 ow . .
——+V-S=-E-j,-B-j,,

118
8 ot (118)

where w is the electromagnetic energy density,
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1
w=—(E*+B?), (119)
8m
and S is the Poynting vector,
c
S=—E XB. (120)
4

Since the electromagnetic field of the monopole is static, the
Poynting theorem can be written as

V.-S=-E-j,-B-j,. (121)

Substituting (105) and (106) in (120), we obtain

_ chGg + TN
S = Ep 477R4r\/’m]3/2(knr)]]/2(kpr)sln Hea. (122)
n, nKp

Since the value of the Poynting vector is independent of the
angle a, the left-hand side of (121) vanishes. It is seen from
(49) that the vector j, is perpendicular to the vector E; hence
the first term on the right-hand side of (121) is zero. The
vector B is collinear to k; hence j,,=0 and the second term
on the right-hand side of (121) vanishes. We see that the
Poynting theorem is valid in the inner region of the mono-
pole. In the outer region of the monopole, Poynting’s theo-
rem is also valid as S, j,, and j,, are zero in this case.

From (119) we have that the electric energy density can
be written in the form

E2
=— 123
W= (123)
and the electric energy of the monopole is
1
W,=—> f E, Edv. (124)
8
np JV

Substituting (105) in (124) and integrating over the volume
V" of the ICC domain, we find that the electric energy of the
inner region of the monopole is

W= (Wn),, (125)

where (W), is the electric energy of the nth mode of the
inner region of the monopole:

0 4

=1 126
27°n’R 4R (126)

(W), =
Substituting (109) in (124) and integrating over the volume
V¢ of the outer region of the monopole, we find that the
electric energy of the external region of the monopole is

N D~ CD0,0,
Wi_nz,p 2R _% ﬂﬁnpR ’ (127)

Thus the electric energy of the nth mode of the outer region
of the monopole is

036610-6
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2 2
_dn_ G
(W), = 2R mn’R’

(128)

Summing (126) and (128), we find that the total electric en-
ergy of the nth mode of the monopole is

30, 34,
2mn’R - 4R’

(W), = (129)

The expressions (127) also contain the interaction energy
between the nth and pth modes, which can be written in the
form
49, _2(=1""0,0
Wo),y= ot =—"F—"F. 130
(Wolnp R mnpR (130)

From (119) we have that the magnetic energy density is

B2
=" 131
W= g (131)
and the magnetic energy of the monopole is
1
W,=-—2> | B, B,dV. (132)
8w wp JV

Substituting (106) in (132) and integrating over the volume
of the ICC domain, we find that the magnetic energy of the
inner region of the monopole is

W= (W), (133)

where (W™), is the magnetic energy of the nth mode of the
inner region of the monopole,

2

W=
" 2mn’R’

(134)

The magnetic field and the magnetic energy are zero in the
outer region of the monopole.

Summing (129) and (134) we find that the total electro-
magnetic energy of the nth mode of the monopole is

30,+G, 3q, G,
=— 5 = + .
"T 20’ R AR 27n’R

(135)

In ESC electrodynamics, the electromagnetic momentum
density can be written in the standard form

1
p=—E XB. (136)
4rc
Hence the angular momentum of the monopole is
1
J=—2> | [r X (E, xB,)ldV. (137)

4arc np Jv
Substituting (105) and (106) in (137) and integrating over the
volume of the ICC domain, we find that the angular momen-
tum of the nth mode is
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_ 0.6,
_ N
" 7T4C7’l3

(138)

There are components in (137) that contain the electric field
of the nth mode and the magnetic field of the pth mode, and
vice versa. We call these components the cross angular mo-
menta of the nth and pth modes. In our case they can be
written in the form

J _ 4’(”QpGn _anGp)(_ ])n+p
" 3ntenp(n® - p?)

€. (139)

Now consider a particular case. If the constants 0, and G,
satisfy the conditions

an_(_ l)an9 (140)
G,=-(-1)"n*G, (141)
then the angular momenta (138) and (139) become
G
Jn = Q_4ek7 (142)
e
40G
an = mek' (143)
Substituting (140) in (110), we have
1 /2
4n=q=—-1\ 0. (144)
T N

Suppose that there is only one mode of the electromagnetic
field in the ICC domain. It follows from the expressions
(142) and (144) that the angular momentum and charge of
the monopole do not depend on the state number n. From
(142) we see that the projection of the angular momentum of
the nth state on the direction of k is

_9¢

’7T4C

(145)

Then from (144) and (145) we have that the expression (135)
can be written in the form

34> J)?
w23, ren)
4R °R

(146)

If J is constant then the energy minimum of the nth state is
reached at a certain magnitude of the electric charge. For
example the energy of the first state of the monopole is mini-
mum if the electric charge is

2]
. 147)
i (

q'==

In our case the electric charge of any state is equal to the
electric charge of the first state and therefore the energy of
any state of the monopole is
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—

\3rel|J] :
W,= R (1+n%). (148)
With g=¢' and n=1 the electric energy of the monopole is
equal to its magnetic energy. The electric monopole energy
does not depend on the state number n. Thus we showed that
the set of equations (82)—(85) has particular solutions that
describe electric monopoles. From equations (86) and (88)
we can obtain the solution that describes magnetic mono-
poles. In general, the ICC domain can have any multipole
moment.

VI. CONCLUSIONS

In the present paper, the governing equations of ESC elec-
trodynamics are formulated, in which ordinary point charges
are absent. The equations of ESC electrodynamics contain
additional terms describing the induced charges and currents.
The densities of the induced charges and currents depend on
the vector k and the vectors of the electromagnetic field, E
and B.
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In ESC electrodynamics the vectors E and B can be de-
fined in terms of two four-potentials. It is shown that the
components of k are the components of the four-tensor of the
third rank. The Lagrangian is found for ESC electrodynam-
ics. We obtain the conditions for which there is only one
four-potential describing the behavior of the electromagnetic
field.

It is shown that static ESC electrodynamics can describe
the electromagnetic field in the inner region of the electric
monopole. There are both electric and magnetic fields in the
inner region. In the outer region of the electric monopole the
electric field is governed by the Maxwell equations. From
the boundary conditions at the interface between the inner
and outer regions, it follows that the vector k has a discrete
spectrum. The electric and magnetic fields, energy, and an-
gular momentum are found for different values of k. The
structure of the electromagnetic field in the inner region of
the monopole is changed in a discrete way when a transition
occurs between different states.

There is a particular case in which different states of the
monopole have the same angular momenta and charges.
Such properties of the electric monopole are similar to prop-
erties of elementary particles.
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